

Criven
$$Z_{=} - 4 + 2i$$
 $Z_{=}a_{+}bi \rightarrow |Z| = \sqrt{a^{2}+b^{2}}$
1) Real part -4 a) Imaginary Part 2
3) $|Z| = \sqrt{(-4)^{2}+2^{2}} = \sqrt{20} = \sqrt{4\cdot5} = \sqrt{4}\sqrt{5} = \frac{2\sqrt{5}}{2\sqrt{5}}$
 $\overline{Z} \rightarrow \text{Conjugate of } \overline{Z}$
 $Z_{=}a_{+}bi \rightarrow \overline{Z} = a_{-}bi$
4) $\overline{Z} = -4-2i$

$$Z = 4 - 3i$$
() Re. Port = 4
$$2)I_{m} \cdot t_{out} = -3$$
3)
$$|Z| = \sqrt{4^{2} + (-3)^{2}} = \sqrt{16 + 9} = \sqrt{25} + 3i = 4 - 3i = 4 + 3i = 5$$
5)
$$Z \cdot \overline{Z} = (4 - 3i)(4 + 3i) = 16 + 12i = 42i - 9i^{2}$$

$$= 16 - 9(-1)$$

$$= 16 + 9 = -25$$

Given
$$Z = 3 - 5i$$
, $W = -2 + 3i$
Sind
1) $Z + W$
 $= 3 - 5i + (-2 + 3i)$
 $= 3 - 5i - 2 + 3i = 1 - 2i$
 $= 3 - 5i - 2 + 3i = 1 - 2i$
 $= -6 + 9i + 10i - 15i^{2}$
 $= -6 + (9i - 15(-1) = -6 + (9i + 15))$
 $= -6 + (9i - 15(-1) = -6 + (9i + 15))$
 $= -6 + (9i - 15(-1) = -6 + (9i + 15))$
 $= -6 + (9i - 15(-1) = -6 + (9i + 15))$
 $= -6 + (9i - 15(-1) = -6 + (9i + 15))$

How to divide by a Complex Number:

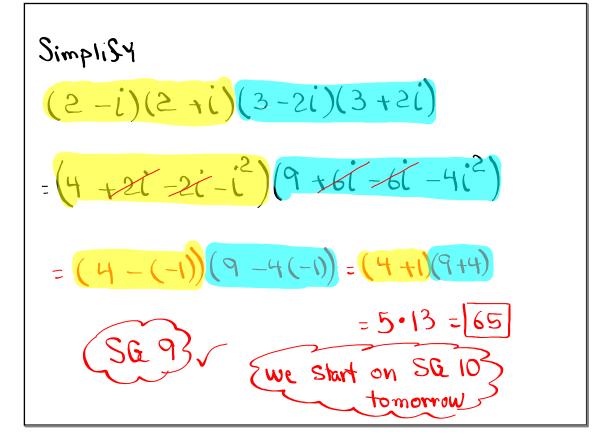
$$\frac{W}{Z} = \frac{W \cdot \overline{Z}}{Z \cdot \overline{Z}} = [0 + bi]$$

$$\frac{2i}{1 - 3i} = \frac{2i(1 + 3i)}{(1 - 3i)(1 + 3i)} = \frac{2i + 6i^{2}}{1 + 3i - 3i - 9i^{2}}$$

$$= \frac{2i + 6(-1)}{1 - 9(-1)} = \frac{-6 + 2i}{1 + 9}$$

$$= \frac{-6 + 2i}{10} = \frac{-6}{10} + \frac{2}{10}i$$

$$= \frac{-6 + 2i}{5} = \frac{-6}{5} + \frac{2}{5}i$$
Re. Part $= \frac{3}{5}$
Im. Part $\frac{1}{5}$


Divide
$$\frac{1-2i}{3+4i}$$

 $\frac{1-2i}{3+4i} = \frac{(1-2i)(3-4i)}{(3+4i)(3-4i)} = \frac{3-4i-6i+8i^2}{9-42i+42i-16i^2}$
 $= \frac{3-10i+8(-1)}{9-16(-1)}$
 $= \frac{3-10i-8}{9+16} = \frac{-5-10i}{25}$
 $= \frac{-5}{25} = \frac{10}{25}i$
 $= \frac{-5}{25} = \frac{10}{25}i$
 $= \frac{-1}{5} = \frac{2}{5}i$
Re. $= \frac{1}{5} = \frac{1}{5}$

Exiven
$$Z = -8 - 6i$$

1) $\overline{Z} = -8 - 6i = -8 + 6i$
2) $|Z| = \sqrt{(-8)^2 + (-6)^2}$
 $= \sqrt{64 + 36}$
 $= \sqrt{100} = 10$
3) $\frac{1}{Z} = \frac{1(-8 + 6i)}{(-8 - 6i)(-8 + 6i)}$
 $= \frac{-8 + 6i}{64 - 48i + 48i - 36i^2} = \frac{-8 + 6i}{64 - 36i - 1} = \frac{-8 + 6i}{64 + 36}$
 $= \frac{-8 + 6i}{100} = \frac{-8}{100} + \frac{6}{100}i = \frac{-0.08 + 0.06i}{-0.08 + 0.06i}$
 $= \frac{-2}{25} + \frac{3}{50}i$

$$W = 2 - 3i \qquad Z = -2 + 4i$$

Sind
1) $Z^{2} = (-2 + 4i)^{2}$
 $= (-2 + 4i)(-2 + 4i)$
 $= (2 - 3i)(2 - 3i)$
 $= (-3i)(2 - 3i)$
 $= (-5 - 12i)$
 $= (-16 - 2i)$
 $= (-4 - 2i)(2 - 2i)(2$

Г

Simplify
$$(2-3i)^{3}$$

= $(2-3i)(2-3i)(2-3i)$
= $(4-6i-6i+9i^{2})(2-3i)$
= $(4-12i-9)(2-3i)$
= $(-5-12i)(2-3i)$
= $-10+15i-24i+36i^{2}$
= $-10-9i-36$
= $-46-9i$

